ANALISIS ANOMALI LAND SURFACE TEMPERATURE MENGGUNAKAN CITRA SATELIT LANDSAT 8 UNTUK IDENTIFIKASI PROSPEK PANAS BUMI GUNUNG SIRUNG DI KABUPATEN ALOR, PROVINSI NUSA TENGGARA TIMUR

ANALYSIS OF ANOMALY LAND SURFACE TEMPERATURE USING LANDSAT 8 SATELLITE IMAGERY TO IDENTIFY GEOTHERMAL PROSPECT OF MOUNT SIRUNG IN ALOR REGENCY, EAST NUSA TENGGARA PROVINCE

  • Annisha Bunga Fathya Institut Teknologi Sumatera
  • Husin Nugraha Pusat Sumber Daya Mineral Batubara dan Panas Bumi
  • Alvira Gusti Ranti Institut Teknologi Sumatera
  • Rina Wahyuningsih Pusat Sumber Daya Mineral Batubara dan Panas Bumi
Keywords: Land Surface Temperature, Pantar Island, Remote Sensing, Single-Channel Algorithm, Thermal Infrared Sensor (TIRS) Band

Abstract

High anomaly analysis of Land Surface Temperature (LST) on Landsat 8 imagery is a remote sensing method to detect the presence of geothermal prospects. This analysis is carried out through the presence of ground surface temperature anomalies. This study aims to identify the indication of Mount Sirung geothermal prospect in Alor Regency, East Nusa Tenggara Province through high LST anomaly analysis which is useful for determining more specific areas for field survey locations. The research method used is LST with a single-channel algorithm using Landsat 8 imagery and determination of high temperature indications based on LST anomalies with natural breaks classification, percentiles, and classical statistics. The Thermal Infrared Sensor (TIRS)  band of Landsat 8 imagery could be a cheap and fast alternative for estimating land surface temperature analysis using the LST anomaly determination method which is useful for determining the boundaries of geothermal prospect indication areas prior to field surveys. This is evidenced by the suitability between the LST high anomaly area and the geothermal prospect area resulting from a field survey. The classification method for determining anomaly values ​​using the natural break and percentile approaches is better than the Classic Statistics approach (mean + 2 Standard Deviation) because the natural breaks and percentile approaches are more robust to the shape of the data distribution, therefore the resulting high anomaly areas becomes detailed and specific.

Downloads

Download data is not yet available.

References

Abubakar, A. J. A., Hashim, M., Pour, A. B., & Shehu, K. (2017). A Review of Geothermal Mapping Techniques using Remotely Sensed Data. Science World Journal, 12(4), 72-82.

Aris, A. (2019). Analisis Land Surface Emissivity menggunakan Data NDVI Landsat 8 dan Pengaruhnya terhadap Formasi Land Surface Temperature di Wilayah Kota Kendari. Jurnal Penginderaan Jauh Indonesia, 1(2), 39-44.

Avdan, U., & Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature using Landsat 8 Satellite Data. Journal of Sensors, 2016.

Azhali, F. M., & Jaelani, L. M. (2020). Analisis Pola Distribusi dan Pola Perubahan Suhu Permukaan Tanah di Kota Surabaya Menggunakan Citra Landsat 8 dan Stasiun Cuaca Otomatis. Geoid, 15(2), 264-273.

Campbell, J. B., & Wynne, R. H. (2011). Introduction to Remote Sensing. Guilford Press.

Choi, Y. Y., & Suh, M. S. (2020). Development of a Land Surface Temperature Retrieval Algorithm from GK2A/AMI. Remote Sensing, 12(18), 3050.

Direktorat Panas Bumi (2022). Pengembangan Panas Bumi di Indonesia. Direktorat Panas Bumi.

Faridah, S. A. N., & Krisbiantoro, A. (2014). Analisis Distribusi Temperatur Permukaan Tanah Wilayah Potensi Panas Bumi Menggunakan Teknik Penginderaan Jauh di Gunung Lamongan, Tiris - ProbOLInggo, Jawa Timur. Berkala Fisika, 17(2), 67-72.

Gorr, W. L., & Kurland, K. S. (2020). GIS Tutorial for ArcGIS Desktop 10.8. ESRI Press.

Hakim, L., Ismail, N., & Faisal, F. (2017). Kajian Awal Penentuan Daerah Prospek Panas Bumi di Gunung Bur Ni Telong Berdasarkan Analisis Data DEM SRTM dan Citra Landsat 8. Jurnal Rekayasa Elektrika, 13(3), 125-132.

Kementerian ESDM (2016), Penetapan Wilayah Kerja Panas Bumi di Daerah Gunung Sirung, Kabupaten Alor, Provisi Nusa Tenggara Timur. SK Menteri ESDM Nomor: 7440K/30/MEM/2016.

Kurniati, E., & Rahardjo, N. (2015). Evaluasi Metode Klasifikasi dalam Pembuatan Peta Kepadatan Penduduk DIY dengan Permukaan Statistik dan Uji Proporsi. Universitas Gadjah Mada.

LAPAN (2018). Katalog Inderja - Citra Satelit Resolusi Menengah - Landsat-8. Diakses pada 1 Agustus 2022. Diakses dari https://inderaja-catalog.lapan.go.id/application_data/default/pages/about_Landsat-8.html.

Loftus, S. C. (2021). Basic Statistics with R. ELSEvier Science.

Murni, L. Y., Yuliara, I. M., & Windaryoto, W. (2021). Distribusi Land Surface Temperature (LST) Menggunakan Metode Spasial Berdasarkan Citra Landsat 8 di Kabupaten Manggarai Nusa Tenggara Timur Pada Periode Juni-Juli 2015-2019. Buletin Fisika, 24(1), 1-9.

Muslim, S., Suherman, A., & Bochori, B. (2021). Analisis Anomali Suhu dan Kerapatan Vegetasi Berdasarkan Citra Satelit Landsat 8 untuk Pemetaan Potensi Panas Bumi di Wilayah Kerja Panas Bumi Rantau Dedap Provinsi Sumatera Selatan. Universitas Sriwijaya.

NASA (2013). Landsat Data Continuity Mission Continuously Observing Your World., Diakses pada 1 Agustus 2022, Diakses dari https://landsat.gsfc.nasa.gov/sites/landsat/files/2012/12/LDCM_Brochure_Dec2012.pdf.

Nugraha, H. S., & Permana, L. A., & Sukaesih (2021). Analisis Citra Satelit Landsat 8 dan DEMNAS untuk Identifikasi Prospek Panas Bumi di Kabupaten Aceh Tengah, Provinsi Aceh. Buletin Sumber Daya Geologi, 16(3), 166-184.

Nurhadi, M., & Kusnadi, D. (2015). Survei Geologi dan Geokimia Daerah Panas Bumi Pualu Pantar Kabupaten Alor, Provinsi Nusa Tenggara Timur. Prosiding Hasil Kegiatan Lapangan Pusat Sumber Daya Geologi Tahun Anggaran 2015.

Qin, Q., Zhang, N., Nan, P., & Chai, L. (2011). Geothermal Area Detection using Landsat ETM+ Thermal Infrared Data and Its Mechanistic Analysis—A Case Study in Tengchong, China. International Journal of Applied Earth Observation and Geoinformation, 13(4), 552-559.

Ramadhan, R. F., & Saputra, R. A. (2021). Identifikasi Area Prospek Panas Bumi Menggunakan Integrasi Citra Landsat 8 OLI/TIRS dan DEM: Studi Kasus Batu Bini, Kalimantan Selatan. Swara Patra: Majalah Ilmiah PPSDM Migas, 11(2), 37-50.

Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2011). Statistical Data Analysis Explained: Applied Environmental Statistics with R. John Wiley & Sons.

Saragih, B. F., Prasetyo, Y., & Sasmito, B. (2015). Identifikasi Manifestasi Panas Bumi dengan Memanfaatkan Kanal Thermal pada Citra Landsat (Studi Kasus: Kawasan Dieng). Jurnal Geodesi Undip, 4(4), 25-33.

Solanky, V., Singh, S., & Katiyar, S. K. (2018). Land Surface Temperature Estimation using Remote Sensing Data. In Hydrologic Modeling (pp. 343-351). Springer, Singapore.

Tian, B., Wang, L., Kashiwaya, K., & Koike, K. (2015). Combination of Well-logging Temperature and Thermal Remote Sensing for Characterization of Geothermal Resources in Hokkaido, Northern Japan. Remote Sensing, 7(3), 2647-2667.

USGS (2022). Earth Explorer. Diakses pada 1 Agustus 2022, dari https://earthexplorer.usgs.gov/

Van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., & Wechsler, C. (2014). Geologic remote sensing for geothermal exploration: A review. International journal of applied earth observation and geoinformation, 33, 255-269.

Yalcin, M., Kilic Gul, F., Yildiz, A., Polat, N., & Basaran, C. (2020). The Mapping of Hydrothermal Alteration Related to the Geothermal Activities with Remote Sensing at Akarcay Basin (Afyonkarahisar), using Aster Data. Arabian Journal of Geosciences, 13(21), 1-17.

Zhang, G., Dong, J., Xiao, X., Hu, Z., & Sheldon, S. (2012). Effectiveness of Ecological Restoration Projects in Horqin Sandy Land, China based on SPOT-VGT NDVI Data. Ecological Engineering, 38(1), 20-29.

Published
2023-07-07
Section
Buletin Sumber Daya Geologi