ANALISIS CITRA SATELIT LANDSAT 8 DAN DEMNAS UNTUK IDENTIFIKASI PROSPEK PANAS BUMI DI KABUPATEN ACEH TENGAH, PROVINSI ACEH

LANDSAT 8 AND DEMNAS IMAGES ANALYSES TO IDENTIFY GEOTHERMAL PROSPECT IN CENTRAL ACEH REGENCY, ACEH PROVINCE

  • Husin Setia Nugraha Pusat Sumber Daya Mineral Batubara dan Panas Bumi
  • Lano Adhitya Permana Pusat Sumber Daya Mineral Batubara dan Panas Bumi
  • Sukaesih Pusat Sumber Daya Mineral Batubara dan Panas Bumi
Keywords: Fault and Fracture Density (FFD), Land Surface Temperature (LST), Direct Principal Component Analysis (DPCA), Mt. Telege

Abstract

Combined analyses of Landsat satellite image and Digital Elevation Model Nasional (DEMNAS) are used to identify geothermal prospect areas. The analyses are applied in Aceh Tengah Regency because the information of springs exists in the regional geological map of Takengon. Two methods are applied to DEMNAS, namely the FFD method and circular features visual interpretation. Land Surface Temperature (LST) and Direct Principal Component Analysis (DPCA) methods are employed on Landsat 8 image. The appearance of circular features, anomalies of LST, and the existence of high-temperature mineral indicators are used to predict heat source indication. In addition, the FFD method is employed to indicate high permeability zones.

 

The research shows that heat source indication is predicted at Mt. Telege Volcanic Complex within the District of Atu Lintang. The heat source is indicated by circular features appearance and LST anomalies within the area. Furthermore, the FFD method reveals an outflow zone near the hot spring of the northern part of Mt. Telege. In addition, the implementation of the DPCA method could not clearly separate between advanced argillic dan propylitic zones from their mineral indication values. It is due to mixing values among several mineral indicator values within the same pixel. In general, the application of the remote sensing method in Aceh Tengah Regency could help to indicate an early possibility of geothermal system exist within the area.

Downloads

Download data is not yet available.

References

Anonim, 2014. Laporan Penugasan Survei Pendahuluan Panas Bumi Gunung Geureudong Kabupaten Aceh Tengah, Kabupaten Bener Meriah dan Kabupaten Aceh Utara - Provinsi Nangroe Aceh Darusallam. Tidak Dipublikasikan.

Avdan, U., dan Jovanovska, G., 2016. Algorithm for Automated Mapping of Land Surface Temperature Using Landsat 8 Satellite Data. Journal of Sensors, 2016.

Badan Informasi Geospasial, 2020. Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. Diakses pada 3 September, 2020, Diakses dari https://tanahair.indonesia.go.id/demnas/

Bivand, R. S., Pebesma, E., dan Gomez-Rubio, V., 2013. Applied Spatial Data Analysis With R (2 ed.). New York: Springer.

Cameron, N. R., Bennett, J.D., Bridge D.M., Clarke M.C.G., Djunuddin A., Ghazali S.A., Harahap H., Jeffery D.H., Kartawa W., Keats W., Ngabito H., Rocks N.M.S., Thompson S.J., 1983. Peta Geologi Lembar Takengon, Sumatera, Skala 1 : 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Carnec, C. F., dan Hubert., 1999. Monitoring and Modeling Land Subsidence at The Cerro Prieto Geothermal Field, Baja California, Mexico, Using SAR Interferometry. Geophysical Research Letters, 26(9), 1211-1214.

ESRI, 2016. Hillshade Function, Diakses pada 10 September 2021, Diakses dari https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/hillshade-function.htm.

Fialko, Y. S., Mark., 2000. Deformation And Seismicity In The Coso Geothermal Area, Inyo County, California: Observations And Modeling Using Satellite Radar Interferometry. Journal of Geophysical Research: Solid Earth, 105(B9), 21781-21793.

Giordano, G., Pinton, A., Baez, P. C. W., Chiodi, A., Viramonte, J., Norini, G., dan Groppelli, G., 2013. Structural Control on Geothermal Circulation in the Cerro Tuzgle-Tocomar Geothermal Volcanic Area (Puna Plateau, Argentina). Journal of Volcanology and Geothermal Research, 249, 77-94.

Hakim, L., Ismail, N., dan Faisal., 2017. Kajian Awal Penentuan Daerah Prospek Panas Bumi di Gunung Bur Ni Telong Berdasarkan Analisis Data DEM SRTM dan Citra Landsat 8. Jurnal Rekayasa Elektrika, 13(3), 125-132.

Hall, R., 2002, Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer Based Reconstruction, Model and Animation, Journal of Asian Earth Science p. 353 – 431.

Hijmans, R. J., 2020. raster: Geographic Data Analysis and Modeling. Diakses dari https://CRAN.R-project.org/package=raster.

Jónsson, S., Adam, N., dan Björnsson, H., 1998. Effects of Subglacial Geothermal Activity Observed by Satellite Radar Interferometry. Geophysical Research Letters, 25(7), 1059-1062.

Lê, S., Josse, J., dan Husson, F., 2008. FactoMineR: A Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1-18.

Nahli, K., Mulyana, F., Tsani, G. E., Alwan, M. A., Darojat, M. H., dan Hendrawan, R. N. (2016). Identifying Non-Volcanic Geothermal Potential in Amohola, Southeast Sulawesi Province, by Applying the Fault and Fracture Density (FFD) Method. IOP Conference Series: Earth and Environmental Science, 42, 012015.

NASA, 2013. Landsat Data Continuity Mission Continuously Observing Your World., Diakses pada 1 November 2020, Diakses dari https://landsat.gsfc.nasa.gov/sites/landsat/files/2012/12/LDCM_Brochure_Dec2012.pdf

Nugraha, H. S., Shiddiq, A. M. I., Agustin, F., dan Surmayadi, M., 2018. Comparison of Application Faults and FractureDensity (FFD) Method using SRTM 90-m, SRTM 30-m, and Aster GDEM 30-m for Geothermal Exploration: a Case of Ile Ange Prospect., 7th ITB International Geothermal Workshop 2018, Bandung.

Oktoberiman, Ramadhan, D.A., Rizki, F., dan Tawakal, R.(2014). Identification of Geothermal Potential Based on Fault Fracture Density (FFD), Geological Mapping and Geochemical Analysis, Case Study: Bantarkawung, Brebes, Central Java., the New, Renewable Energy and Energy Conservation Conference and Exhibition - The 3rd Indonesia EBTKE-ConEx, Jakarta.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria., Diakses pada 1 November,2020,Diakses dari http://www.R-project.org/.

Salamba, K. E., Hede, A. N. H., dan Heriawan, M. N., 2019. Identification of Alteration Zones using a Landsat 8 Image of Densely Vegetated Areas of the Wayang Windu Geothermal Field, West Java, Indonesia. The IOP Conference Series: Earth and Environmental Science.

Soengkono, S., 1999a. Analysis of Digital Topographic Data for Exploration and Assessment of Geothermal System., 21st New Zealand Geothermal Workshop.

Soengkono, S., 1999b. TeKopia Geothermal System (New Zealand) – the Relationship between Its Structure and Extent. Geothermics, 28(6), 767-784.

Soengkono, S., 2000. Assessment of Faults and Fracture sat the Mokai Geothermal Field, Taupo Volcanic Zone, New Zealand., World GeothermalCongress.

Soengkono, S., 2002. Assessment of Topographic Lineaments across Rotorua Geothermal Field., 24th New Zealand Geothermal Workshop.

Suryantini, dan Wibowo, H. H., 2010. Application of Fault and Fracture Density (FFD) Method for Geothermal Exploration in Non-Volcanic Geothermal System; a Case Study in Sulawesi Indonesia. Jurnal Geoaplika, 5(1), 027-037.

USGS. (2020). Earth Explorer., Diakses pada 3 September, 2020, dari https://earthexplorer.usgs.gov/

Van der Meer, F., Hecker, C., van Ruitenbeek, F., van derWerff, H., deWijkerslooth, C., dan Wechsler, C., 2014. Geologic Remote Sensing for Geothermal Exploration: A Review. International Journal of Applied Earth Observation and Geoinformation, 33, 255-269.

Published
2021-12-06
Section
Buletin Sumber Daya Geologi